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Self-organized criticality as an absorbing-state phase transition
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We explore the connection between self-organized criticality and phase transitions in models with absorbing
states. Sandpile models are found to exhibit criticality only when a pair of relevant parameters — dissipation
e and driving fieldh — are set to their critical values. The critical values ofe andh are both equal to zero. The
first result is due to the absence of saturation~no bound on energy! in the sandpile model, while the second
result is common to other absorbing-state transitions. The original definition of the sandpile model places it at
the point (e50,h501): it is critical by definition. We argue power-law avalanche distributions are a general
feature of models with infinitely many absorbing configurations, when they are subject to slow driving at the
critical point. Our assertions are supported by simulations of the sandpile ate5h50 andfixedenergy density
z ~no drive, periodic boundaries!, and of the slowly driven pair contact process. We formulate a field theory for
the sandpile model, in which the order parameter is coupled to aconservedenergy density, which plays the role
of an effective creation rate.@S1063-651X~98!08805-9#

PACS number~s!: 64.60.Lx, 05.40.1j, 05.70.Ln
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I. INTRODUCTION

Avalanche behavior is common to many physical ph
nomena, ranging from magnetic systems~the Barkhausen ef
fect! @1# and flux lines in high-Tc superconductors@2#, to
fluid flow through porous media@3#, microfracturing pro-
cesses@4#, earthquakes@5#, and lung inflation@6#. The com-
mon feature of all these systems is slow external drivi
causing an intermittent, widely distributed response. A
lanches come in very different sizes, often distributed a
power law. This fact excites the interest of statistical phy
cists, since power laws imply the absence of a character
scale, a feature observed close to a critical point. In orde
describe a critical point, we need only specify a set of criti
exponents, whose values are determined by general sym
tries and conservation laws and do not depend on mi
scopic details of the system.

Is there a connection between the observed power-
distribution of avalanche sizes and critical phenomena? A
if so, can we understand the physics of avalanches by ap
ing what we know about critical points and universality?
tentative answer to these questions was given by Bak, T
and Wiesenfield~BTW! @7#, who proposed that the powe
laws in avalanche statistics are due to a new kind of crit
phenomenon, which they called self-organized critica
~SOC!. In ordinary phase transitions, criticality is attaine
only by fine-tuning certain control parameters~temperature,
pressure, etc.! to special values. Only close to this critic
point is scale invariance observed. BTW suggested tha
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some dynamical systems the critical point is reached a
matically, without any fine tuning, thus explaining the wid
occurrence of power laws in nature. The idea was then
emplified by several dynamical models, such as the sand
@7#, and the forest-fire model@8#. The SOC hypothesis ha
stimulated an enormous amount of research. If this — as
of its originators has concluded — is ‘‘how nature works
@9#, then the question of ‘‘how SOC works’’ becomes all th
more urgent.

The concept of ‘‘spontaneous’’ criticality, as discussed
the SOC literature, presents, however, several ambigui
Several authors have noted that the external driving rate
parameter that has to be fine tuned to zero in order to obs
criticality @10–13#. On the other hand, it would be amazin
without prior knowledge of the critical coupling, to define
system like the Ising model so that it is intrinsically at i
critical point. SOC appears less miraculous if we supp
that there is ‘‘generic scale invariance,’’ i.e., that criticali
obtains over a region of parameter space, not just a po
But we will argue that as for the Ising model, SOC typica
exists at a criticalpoint in the relevant parameter space. T
identity of the parameters has been obscured by the ma
in which the models were defined. How can a model
critical by definition, when for most statistical mechani
models, we do not evenknow the exact critical point? One
way for a system to discover its own critical point is throu
a suitable extremal dynamics, as in invasion percolation;
other is that we may know the critical parametersa priori,
because they are fixed by a symmetry or a conservation
and build these into the definition of the model.

Recently, a novel mean-field analysis of SOC models w
presented@13#, which pointed out the similarities betwee
SOC models and models with absorbing states@14,15#. ~An
absorbing state is one allowing no further change or ac
ity.! The mean-field theory provides a new insight into t
origin of SOC, which, in the sandpile model, is essentia
the criticality of the population of toppling sites. It turns o
5095 © 1998 The American Physical Society
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5096 57DICKMAN, VESPIGNANI, AND ZAPPERI
that SOC corresponds to the onset of nonlocality in the
namics of the system. Nonlocality, and hence criticality,
obtained by fine tuning the control parameters, precisely
in continuous phase transitions. In this paper we focus on
similarities and differences between SOC and models w
absorbing states. The latter are relatively well understo
We can identify the order parameter, and know the static
dynamic scaling behavior in the neighborhood of the criti
point. The mean-field and field-theoretic analyses are w
established, and one has some idea how to derive these
ing from an exact master equation@16#. Applying these
ideas, we arrive at a new understanding of SOC.

In Sec. II we review the models of interest: contact p
cesses and sandpiles. The formulation of a general theo
SOC is problematic because of the nonlocal interactions
plicitly present in these models. For instance, field-theor
analysis encounters difficulties related with the singularity
the continuum limit@17#. Moreover, it is in general not pos
sible to treat simultaneously the two time scales of avalan
propagation and external driving. Section III describes h
these problems can be solved by a suitable ‘‘regularizatio
of the dynamics, which is local in space and time, and p
sents sandpile criticality as a kind of absorbing-state tra
tion. The regularized dynamics readily lends itself to a co
tinuum formulation, presented in Sec. IV. This motivates,
Sec. V, a study of sandpiles at the critical point, witho
boundaries or driving, and of the pair contact process sub
to a slow drive. We present preliminary simulation results
these systems. We summarize our perspective on SO
Sec. VI.

II. CONTACT PROCESSES AND SANDPILES

A. The contact process

One of the simplest models showing an absorbing-s
transition is the contact process~CP! @18# @see Fig. 1~a!#. To
each site of ad-dimensional lattice we assign a binary va
able s i50,1. ~Occupied sites are said to harbor a ‘‘pa
ticle.’’ ! Occupied sites (s51) become empty (s50) at unit
rate, while empty sites become occupied with ratewl, where
w is the fraction of occupied nearest neighbor~NN! sites.
The vacuum state~all sites empty!, is clearly absorbing and
is the only stationary state forl,lc , while for l.lc there
is also an active stationary state. (lc.3.298 in one dimen-

FIG. 1. ~a! Transition rates in the one-dimensional contact p
cess. Filled circles denote occupied sites, open circles, vacant
gray sites may be either occupied or vacant.~b! Transition rates in
the one-dimensional pair contact process.
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sion.! The order parameter is the densityra of active~occu-
pied! sites, which vanishes at the transition as

ra;~l2lc!
b. ~1!

The simplest~mean-field! description of the CP treats thes i
as uncorrelated:

dra

dt
52~12l!ra2lra

2 , ~2!

leading tolc51 andb51. As in equilibrium, we character
ize the critical singularities by a set of critical exponen
@19#, such asb, andn' , which describes the divergence o
the correlation lengthj:

j;~l2lc!
2n'. ~3!

Besides the ‘‘thermal’’ perturbationD[l2lc , a second
relevant field is an external particle sourceh. (h is the rate of
‘‘spontaneous’’ creation at vacant sites.! For D50, ra
;h1/dh. Other exponents are defined by considering the
cay of perturbations to the stationary state@19#. Models with
a single absorbing state fall generically in the universa
class of directed percolation~DP!, also known as Reggeo
field theory@19–21#.

A more complicated situation arises when many abso
ing configurations exist. The simplest model to have be
studied in detail so far is Jensen’s pair contact process~PCP!
@22# @see Fig. 1~b!#. In this model, a nearest-neighbor pair
particles may mutually annihilate, with probabilityp, or else,
with probability q[12p, create a new particle at a ran
domly chosen NN, provided it is vacant. There are infinite
many absorbing configurations, since all that is required
the absence of any NN particle pairs. In one dimension
static critical behavior atqc50.9229 is DP-like@22,23#, but
the spreading or avalanche dynamics has variable expon
depending on the particle densityf in the environment of
the seed@24#. A special, ‘‘natural’’ class of absorbing con
figurations with particle densityfnat are those spontaneous
generated by the critical dynamics. DP spreading expon
are recovered only if the initial particle density is set
fnat.0.242(1) @24–27#.

B. The sandpile model

Sandpile models are cellular automata~CA! with an inte-
ger ~or in some cases continuous!, variablezi ~‘‘energy’’ !,
defined on ad-dimensional lattice. At each time step an e
ergy grain is added to a randomly chosen site, until the
ergy of a site reaches a thresholdzc . When this happens the
site relaxes:

zi→zi2zc ~4!

and energy is transferred to the nearest neighbors:

zj→zj1yj . ~5!

The relaxation of a site can induce NN sites to relax in tu
if they exceed the threshold because of the energy recei
and so on. From the moment a site reaches threshold,
all sites have again relaxed (zi,zc , ; i ), the addition of

-
es;
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57 5097SELF-ORGANIZED CRITICALITY AS AN ABSORBING- . . .
energy is suspended. The sequence of events during thi
terval constitutes anavalanche. For conservative models th
transferred energy equals the energy lost by the relaxing
((yj5zc), at least on average. Usually, dissipation occ
only at the boundary, from which energy can leave the s
tem.

Since the energy input stops during an avalanche,
have, in effect, an infinite time scale separation between
toppling dynamics and the external source. Under these
ditions the system reaches a stationary state characterize
avalanches whose sizess are distributed as a power law
@7,28–31#:

P~s!;s2t. ~6!

The model introduced by Bak, Tang, and Wiesenfeld~BTW!
@7# is a discrete automaton in whichzc52d andyj51 ~see
Fig. 2!.

An interesting variation of the original sandpile is th
Manna model@32# ~see Fig. 3!. In this automaton the critica
threshold iszc52 independent of the dimensionalityd, and
if a relaxation~toppling! takes place, the energy is distrib
uted to two randomly chosen nearest-neighbor sites~see Fig.
3!. Variations in which part of the energy is kept by th
relaxing site can also be considered, as well as model
which energy is transferred along a preferred direction@28#.

Finally, sandpile models in which part of the energy
dissipated have been studied@33#. In continuous-energy
models, some fraction of the energy removed from a relax

FIG. 2. The BTW sandpile model. When four grains are ac
mulated in one lattice site (zc54), the site relaxes distributing th
grains to the neighboring sites.
in-

ite
s
s-

e
e
n-
by

in

g

site is lost, instead of being transferred to one of the nei
bors @33#. In a discrete-energy model, such as the Manna
BTW sandpiles, one can introduce a parametere represent-
ing the average energy dissipated in an elementary relaxa
event. The two dissipation mechanisms lead to the same
fect, namely, a characteristic length is introduced into
system and criticality is lost. The avalanche size distribut
decays as

P~s!;s2t f ~s/sc!, ~7!

where the cutoff size scales assc;e21/s. We can also ob-
serve avalanches in the contact process, by starting the
tem with a single particle@34#. The activity may spread ove
many sites before dying out; avalanches are power-law
tributed if l is set to its critical value.

At first glance, the BTW sandpile looks quite unlike th
CP. One difference is that the avalanche dynamics in
sandpile isnonlocalanddeterministic. The sandpile model is
inherently nonlocal because of the implicit time scale se
ration. A site can receive energy only if the system
quiescent, i.e., no active sites are present on the lattice.
implies that transition rates depend upon the entire se
lattice variables present in the system, giving rise to
strongly nonlocal dynamical rule. Given the configurati
prior to the avalanche, and the location of the newly add
particle, deterministic toppling rules govern the evolution
the next stable configuration, and this evolution can aff
sites anywhere in the system. To have any hope of apply
the methods used for the CP, we have to assume that
deterministic sandpile dynamics can be realized as a limi
case of models with local, stochastic dynamics,belonging to
the same universality class as the sandpile. ~We refer to this
as ‘‘regularizing’’ the sandpile rules.! The latter hypothesis

-

FIG. 3. The Manna sandpile model. When two grains are ac
mulated in one lattice site (zc52), the site relaxes distributing th
grains to two randomly chosen neighbors.
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5098 57DICKMAN, VESPIGNANI, AND ZAPPERI
would need to be verified, but seems plausible if the ru
respect the same symmetries and conservation laws as
of the original model.~We provide an example in Sec. V!
Similar considerations apply to ‘‘extremal dynamics,’’ whic
requires the action of an omniscient agent to choose the
event. Such a dynamics can presumably emerge as a lim
case of local rules in which each unit only has informati
about a finite number of neighbors.

As originally defined, the sandpile seems to involveno
parameters. There is only the toppling rule, which, af
some time, miraculously yields a critical state. But in dev
ing a regularized dynamics, we are forced to include a n
vanishing driving rate by introducing the probabilityh per
unit time that a site will receive a grain of energy@13#. ~We
may fix the relaxation rate for active sites at unity.! Energy is
distributed homogeneously and the total energy flux is gi
by Jin5hLd. The parameterh sets the driving time scale o
equivalently the typical waiting time between different av
lanches astd;1/h. As h→0, we recover the slow driving
limit; i.e., during an avalanche the system does not rece
energy. This formulation of the dynamics has the advant
of being local in space and time. The state of a single
depends only on the state of the site itself and its near
neighbor sites at the previous time step, through a transi
probability that is given by the reaction and driving rates

III. TOWARDS A LOCAL THEORY OF SOC

After reformulating the sandpile rules as local and s
chastic, we can proceed along the path followed for none
librium phase transitions. From the master equation we
derive mean-field equations that give a qualitative picture
the phenomenon, exploiting several analogies with mod
with absorbing states. The mean-field analysis of regulari
sandpiles shows that the order parameter is the densityra of
active sites~i.e., whose heightz>zc), and thatra is coupled
to the densities of ‘‘critical’’ (z5zc21) and ‘‘stable’’ (z
,zc21) sites@13#. In mean-field theory, the dependence
the order parameterra on the parametersh and e can be
obtained on the back of an envelope. Since energy is c
served in the stationary state, the incoming energy fluxJin
must be balanced by the dissipated energyJout5eraLd.
From Jin5Jout, we obtain

ra5
h

e
. ~8!

There is no stationary state forh.e; see Fig. 4. The model is
critical just in the double limith,e→0,h/e→0, since the
zero-field susceptibilityx[dra /dh diverges, implying a
long-ranged~critical! response function. Critical behavio
emerges in the limit of vanishing driving field, correspondi
to locality breaking in the sandpile dynamics. The drivi
and dissipation rates are thecontrol parametersof the
model; the stationary order parameter naturally vanishe
the critical point. Whenh50, any configuration withra
50 is absorbing. Thus there are an infinite number of
sorbing configurations for a sandpile, just as for the p
contact process.~In close analogy with Ref.@13#, in the field
s
ose

xt
ng

r
-
-

n

-

e
e

te
st-
n

-
i-
n
f
ls
d

f

n-

at

-
ir

theory of the PCP the order parameter — the density
nearest-neighborpairs — is coupled to a non-order
parameter field@23#.!

In absorbing-state transitions, it is very useful to consid
the spread of active sites from an isolated seed. Follow
the scaling framework developed by Grassberger and d
Torre @19#, we expect that the probability that a small pe
turbation imposed on an absorbing configuration activates
sites scales as

P~s,e!5s2tG„s/sc~e!…, ~9!

wheresc;e21/s is the cutoff in the avalanche size. The pe
turbation decays in the stationary subcritical state as

ra~ t !;thF„t/tc~e!…. ~10!

Here tc denotes the characteristic time, which scales astc
;e2n uu. In this way we have translated the avalanche
scription into the formalism commonly employed to stu
models with absorbing states@34#.

It is natural to regard sandpile models as having two
rameters,e andh, with the original models poised, by defi
nition, at the point (0,01). It should be evident thate in the
sandpile model is a ‘‘temperaturelike’’ variable, playing th
same role aslc2l[2D in the CP. Fore.0 we cannot
have sustained avalanches; they decay exponentially in
subcritical regime. To have self-sustained avalanches, or
active stationary state withh[0 in the sandpile, we would
neede,0, that is to say, the possibility of creating add
tional energy quanta when a site topples. But this imme
ately raises a new problem: the energy will never be l
~except at the boundaries!, so in the thermodynamic limit we
shall have a runaway ‘‘chain reaction’’ instead of a statio
ary state fore,0. The impossibility of a stationary state fo
e,0 is analogous to the absence of a well-defined free
ergy in the Gaussian model belowTc . Neither model has the
saturation effect needed for stability in the ‘‘low
temperature’’ phase. In the Gaussian model the stabiliz

FIG. 4. Phase diagrams of the sandpile and birth-and-death
cesses, and of the contact process and the PCP. The thermal p
eterr corresponds toe in the sandpile, 12l in the birth-and-death
process, and tolc2l in the contact process. ‘‘nss’’ denotes a r
gion where no stationary state is possible.
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57 5099SELF-ORGANIZED CRITICALITY AS AN ABSORBING- . . .
uf4 term is missing from the Hamiltonian, while in th
sandpile there is nothing to stop energy from accumulat
Indeed, to do so would mean to lose energy from the syst
destroying the conservation law even fore50. Criticality
would thenrequire that e take some negative buta priori
unknownvalue.Thus the possibility of not having to tune th
system is predicated on the absence of saturation, or, equiva-
lently, on having strict energy conservation whene50.

Another example is furnished by removing saturati
~i.e., the restriction to at most one particle per site! from the
CP, resulting in an exactly soluble birth-and-death branch
process. In this model, particles disappear at unit rate,
produce offspring at ratel, at neighboring sites, whethe
they are occupied or not. This corresponds to settingb50 in
the mean-field equation

dr

dt
5~l21!r2br2. ~11!

The density grows without limit forl.lc51. It is impor-
tant to note thatlc51 not only in mean-field theory, but in
fact for the actual birth-and-death process. Avalanches
low power laws, with the survival probabilityP(t);t21, for
example. Restoring saturation (b.0) permits the existence
of an active stationary state, but at the cost of shiftinglc to
some larger buta priori unknown value. ~The birth-and-
death process is free of higher-order terms that would re
malize the critical value of the thermal parameter from t
given by mean-field theory.! As shown in Fig. 4, neither
model has a stationary state for negative values of the t
mal parameterr ; this is the main difference from the phas
diagram of the CP. The sandpile, however, presents a fur
subtlety: while there is no upper bound onenergy, the order
parameter is subject to saturation, sincera cannot exceed
unity.

The critical point of the birth-and-death process is atl
51 because this point corresponds to a balance, on ave
between births and deaths. Similarly, the sandpile is crit
at e50 because a toppling site sends a particle to eachg
neighbors, and each of these neighbors is critical with pr
ability 1/g, so the gain and loss terms for the number
active sites balance on average. Thus the sandpile and
birth-and-death process have the same phase diagram.
does not mean, of course, that the two models share the s
avalanche dynamics — that of the birth-and-death proces
rather trivial. An important aspect of the sandpile is that
condition needed for critical avalanches — that a fractiong
of the nearest neighbors of an active site be critical —
established by the transient dynamics of the model. The
overs from preceding avalanches provide the environmen
which activity is critical. Memory appears to be the cruc
feature of SOC models, and is due to the presence of a
trivial threshold for activity; for sandpiles this means th
zc>2. ~For completeness, we note that a sandpile withzc
51 corresponds to a simple random walk, with well-know
scaling properties. One may think of it as the analog of
birth-and-death process, in the family of models obey
strict conservation of particle number fore50.! The mean-
field analysis@13# shows that having~on average! a fraction
1/g of the nearest neighbors of an active site critical is n
essary for having a stationary state, in which energy inpu
g.
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balanced by dissipation. That is, the only stationary state
a sandpile at (0,01) is a critical state.

What happens when we impose an activity threshold
the CP? One realization of such a threshold correspond
the PCP. We study thedriven PCP in Sec. V. Here we con
sider the field-theoretic description of the PCP@23#. As noted
above, the order parameterr is coupled to a non-order
parameter fieldn representing the density of isolated pa
ticles. The equations take the form

]r

]t
5Dr¹2r2ar2br22wnr1•••1hr ~12!

and

]n

]t
5Dn¹2r1rr2ur22w̄nr1•••1hn , ~13!

where the noise terms satisfy

^h i~x,t !h j~x8,t8!&5G i , jr~x,t !d~x2x8!d~ t2t8!. ~14!

The fieldn(x,t) is frozen in regions wherer50. @If w50,
Eq. ~12! is the minimal field theory for the CP@35#.# Now,
because of the simple form of then equation, we can for-
mally eliminate this field to obtain

]r

]t
5Dr¹2r2ar2br21hr2wrr~x,t !

3E
0

t

dt8r~x,t8!e2w̄*
t8
t

dsr~x,s!, ~15!

which exhibits a long-memory effect@23#. The nonlocal term
turns out to be irrelevant to the stationary properties of
active phase: it is exponentially small if the density of acti
sites is different from zero. The situation can be different
spreading from a seed, in which case the active sites f
only an infinitesimal fraction of the lattice.

IV. FIELD THEORY OF SANDPILES

A field theory of sandpiles should parallel that for th
PCP in many respects. As noted before, a crucial point of
sandpile dynamics is the coupling of the density fieldra with
the background of critical sitesrc . Each region devoid of
active sites is frozen until such a site is generated. The
tivity spreads and in general alters the configuration befor
moves away or disappears. The active sites leave a trac
their dynamical history in the frozen configurations of cri
cal and stable sites they produce. If new active sites
created in the same region at some later time, they will f
the effect of the active sites present earlier in the region. T
creates a long-range interaction in time and space am
active sites. The range of this interaction depends on
characteristic time scale of the driving, because the fluct
tions induced byh destroy the memory effect. Close to th
infinite time scale separation, the characteristic driving ti
scale diverges and the range of the nonlocal interaction
tends to the entire system. This picture is valid also for
PCP, since in both systems the response function diverge
ra approaches zero and the nonlocal term becomes more
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5100 57DICKMAN, VESPIGNANI, AND ZAPPERI
more important asra→0. In sandpile models the density o
active sites is proportional to the external fieldh and nonlo-
cality is recovered in the limith→0.

We turn now to a detailed continuum description of t
BTW model. Letr i(x,t) be the density of sites with heighti
at x. We note that each site is subject to an input of ene
due to three sources:~1! The external field,h; ~2! toppling of
active sites at any of the four NN’s: (42e)ra where ra
5( i>4r i and e is the average energy dissipated;~3! a
diffusion-like contribution: (12e/4)¹2ra . The diffusive
term arises because a gradient inra leads to a particle flux:
the excess in the mean number of particles arriving atx from
the left, over those arriving from the right, isj x(x,t)52(1
2e/4)]xra . The net inflow of particles atx is therefore
2¹• j5(12e/4)¹2ra . Applying these observations to th
mean-field equations derived in Ref.@13#, we can write down
the following set of continuum equations:

]r i

]t
5r i 141~r i 212r i !$~42e!@ra1 1

4 ¹2ra#1h%1h i 14
T

2h i1h i 21 , 0< i<3 ~16!

and

]r i

]t
52r i1r i 141~r i 212r i !$~42e!@ra1 1

4 ¹2ra#1h%

2h i
T1h i 14

T 2h i1h i 21 , i>4. ~17!

~For i 50, of course,r21 andh21 are identically zero.! The
terms h i represent noise arising due to fluctuations in
number of events of a given kind;h i is the contribution
associated with the reactioni→ i 11, andh i

T with toppling:
i→ i 24 for i>4. Since the number of events is Poiss
distributed~approaching a Gaussian in the continuum lim!,
the variance equals the mean, and the noise variance is
portional to the mean rate of the corresponding process. T
we have

^h i~x,t !h j~x8,t8!&5Gd i j d~x2x8!d~ t2t8!r i~x,t !

3@~42e!ra~x,t !1h# ~18!

and

^h i
T~x,t !h j

T~x8,t8!&5GTd i j d~x2x8!d~ t2t8!r i~x,t !.
~19!

The noise terms}¹2ra have been dropped, as they are e
pected to be irrelevant.

This set of equations satisfies probability conservati
(srs is a constant, equal to unity by normalization. L
z(x,t)[(ssrs(x,t) be the local energy density. From Eq
~16! and ~17! we have

]z

]t
5S 12

e

4D¹2ra1h2era1hz , ~20!

where

^hz~x,t !hz~x8,t8!&5Gzd~x2x8!d~ t2t8!@h1era~x,t !#.
~21!
y

e

ro-
us

-

:

~Again we have neglected diffusive noise, and have used
fact that in the absence of a source and of dissipation,
total energy does not fluctuate.! For h5e50 we have simply

]z

]t
5¹2ra , ~22!

so thatE5*d2xz(x,t) is conserved.
The generalization of Eqs.~16! and ~17! to other dimen-

sions, or to other sandpile models~e.g., Manna’s!, is straight-
forward, but the analysis of this complicated set of equatio
is problematic. One might try to cut off the hierarchy b
simply declaringr i[0 for i greater than somei c . The
choice of cutoff, however, is not obvious, and one wou
have to add suitable correction terms to ensure that energ
conserved when one active site topples onto another.~Alter-
ing the sandpile rules toforbid such transfers — in effect
constraining all sites to havez<zc — raises an interesting
possibility, but one that we shall not pursue further here.! As
a step toward simplification of the continuum equations,
sum up Eq.~17! for i>4 to obtain

]ra

]t
52ra1ra* 1r3$~42e!@ra1 1

4 ¹2ra#1h%

2ha
T1ha* 1h3 , ~23!

wherera* [( i>8r i , ha
T[( i>4h i

T , andha* [( i>8h i
T . Since

the density of sites with heights>8 should be negligible, we
might ignore the terms with asterisks. Then the active-s
density is coupled only tor3, identified in Ref.@13# as the
density ofcritical sites,rc . In that work, sites with heights
,3 are considered in a unified manner, as the density
stablesites,rs . Equation~16! shows, however, that the evo
lution of rc is coupled specifically tor2, not simply tors
[r01r11r2. In the mean-field theory@13#, the quantityu
5r2 /rs is therefore introduced. In a spatially homogeneo
stationary state, the value ofu can be deduced from energ
conservation. But in the present context,u5u(x,t) is an-
other dynamical variable. Thus our attempt to reduce E
~16! and~17! to a description in terms of three basic categ
ries meets with difficulties.

Rather than pursuing a systematic derivation of a redu
set of equations from Eqs.~16! and ~17!, we shall use what
we have learned so far, together with the observation tha
constructing a field theory, a detailed accounting is unimp
tant, so long as one respects the symmetries and conserv
laws of the original model. In the present instance, it is
sential to ensure conservation of energy whene5h50. In
fact, Eq.~20! represents this explicitly, and shows how th
energy densityz is coupled tora . We therefore retain Eq
~20! as one of our basic equations.

We obtain the other equation by replacingr3 in Eq. ~23!
with f (z)(12ra): only nonactive sites can contribute to th
gain term forra , and they do so at a rate that depends on
local energy density.@ f (z) plays a role analogous to that o
u in the mean-field theory.# For smallz, far from criticality,
one expects the height distribution to be Poissonian, so
f (z)}z3; for large values ofz, f will approach a limiting
value. The case of most immediate interest is a system
the critical stationary state, withz.zc and f .rc ,



n
nt

ll

r
he
is

r

te

nd
i

,

-

e
.

r t
in
n

a

g-

ay
ia

in
ng

nd-
ve a
m-

ivial
b-

ore

fact
ry

ical
n-

-

s of
me

ce
e
ing
for
d at
reti-
ce
of
pile

he

l

n-

57 5101SELF-ORGANIZED CRITICALITY AS AN ABSORBING- . . .
wherezc andrc represent the average values of energy a
the density of critical sites, respectively, at the critical poi
From the MF solution we haverc51/4 for the BTW model
in the limit h→0, i.e., the density of critical sites is sti
rather small, andf is an increasing function:f (z)5rc
1A(z2zc)1•••, with A.0. Presumably, only the linea
term need be retained in the vicinity of the critical point. T
resulting field theory for the regularized BTW sandpile
given by

]ra

]t
52ra1@rc1A~z2zc!#~12ra!

3$~42e!@ra1 1
4 ¹2ra#1h%1ha , ~24!

where

^ha~x,t !ha~x8,t8!&5Gd~x2x8!d~ t2t8!z~x,t !

3@~42e!ra~x,t !1h#, ~25!

together with Eqs.~20! and ~21!. As in the PCP, our field
theory for the sandpile supports an infinite number of abso
ing configurations: anyz(x,t) consistent withra[0 ~when
h50). In both theories, the non-order-parameter field en
the equation for the order parameter in the role of aneffective
creation rate. The crucial difference between the PCP a
the sandpile is that in the latter case, this auxiliary field
conserved at the critical point.

In a simple mean-field treatment~spatially homogeneous
no noise!, we have

dra

dt
52F e

4
2a~ z̄21!S 12

e

4D Gra2@11a~ z̄21!#

3S 12
e

4D ra
21@11a~ z̄21!#

h

4
, ~26!

and

dz

dt
52era1h, ~27!

where we define 4A(z2zc)5a( z̄21) by introducing z̄
[z/zc . Fore andh small, andh/e!1, the mean-field equa
tions have the stable stationary solutionra5h/e, z̄51
2h/ae. In the caseh501 — the slowly driven limith,e
→0, with h/e→0 — the stationary value ofz approaches
the critical heightzc . It is easy to recognize then thate plays
the role of a control parameter, analogous tol in the CP,
with the critical point ate50.

A different situation is faced when we imposee5h50
from the outset, rather than via the slowly driving limit. W
have from Eq.~27! that z is strictly conserved in this case
The average energy density is thus an external paramete
can be freely fixed in the initial condition. In this case,
fact, z is the only control parameter. In the following sectio
we present simulations of just such a situation.

The full analysis of the field theory will be deferred to
future publication. Here we simply observe that fore5h
50,
d
.

b-

rs

s

hat

z~x,t !5z~x,t50!1E
0

t

dt8¹2ra~x,t8!. ~28!

The evolution of the active-site density contains lon
memory terms. Ifz(x,t50)5z0(x)'zc , then to leading or-
der

]ra

]t
5

1

4
¹2ra1a~ z̄021!ra2ra

2

1
a

zc
raE

0

t

dt8¹2ra~x,t8!1ha , ~29!

Unlike the PCP, in which the memory terms dec
}exp(2C*dtra), here the memory decays more slowly, v
the diffusive relaxation ofra . It is worth noting that even in
active regions, fluctuations in the height fieldz cannot relax
directly; they only do so by inducing similar fluctuations
ra . Relaxation of the latter then redistributes energy alo
with active sites.

In summary, all of the models discussed so far — sa
piles, the CP, PCP, and the birth-and-death process — ha
critical point in a space of two relevant parameters, one te
peraturelike (r ), the other fieldlike (h). Criticality requires
h50. Models such as the sandpile and PCP have a nontr
threshold for activity and therefore exhibit multiple absor
ing configurations. When such models are run at (r 50,h
501), then out of a range of possible values for one or m
non-order-parameter densities~the critical-site density in the
sandpile, the density of isolated particles in the PCP!, the
dynamics selects a unique value. From this vantage, the
that certain models are critical by definition is of seconda
importance. The essential feature is the behavior of a crit
system under slow drive. We can study a critical, but no
SOC sandpile by settinge5h50; conversely, we can ob
serve avalanches on all scales in the PCP if we setp5pc and
h501.

V. SIMULATION RESULTS

The preceding discussion motivates several new kind
simulations of the sandpile and the PCP. We report so
preliminary results in this section.

A. Sandpiles ate5h50

In a regularized theory of sandpiles, we need to introdu
a dissipation ratee>h to realize a stationary state. In th
original model, a stationary state is achieved by impos
open boundary conditions. While this may be appropriate
modeling processes in which stress may only be release
the boundaries of the system, it is an inconvenience theo
cally: it is easier to study criticality in uniform systems; on
bulk behavior is understood, the effects of various kinds
boundaries can be analyzed. We therefore study a sand
with periodic boundaries. We performed simulations of t
stochastic BTW sandpile at (e50,h50). With e5h50, the
mean-heightz[N/Ld is strictly conserved; it is an additiona
parameter at our disposal.

Initial configurations are generated by distributing at ra
dom a fixed numberN of particles amongLd lattice sites.
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5102 57DICKMAN, VESPIGNANI, AND ZAPPERI
~Since the initial configuration is on average spatially hom
geneous, all average properties such as densities and c
lation functions are translation invariant.! Once all N par-
ticles have been placed~but not before!, the dynamics
begins: each active site~i.e., havingz>zc52d) topples at
unit rate. In practice, we maintain a list of the current set
Na active sites, choose one at random as the next to top
and update the list following the redistribution of energy
the 2d neighbors. At each toppling event, time is incr
mented by 1/Na — the mean waiting time to the next even
We compute average properties over a set ofNsampindepen-
dent trials, each using a distinct initial configuration. (Nsamp
51032105 depending on the lattice size and the distan
from criticality.!

Sustained activity depends upon two factors. First, th
must be at least one active site in the initial configurati
This condition is trivially satisfied on large lattices, as t
probability of havingno active sites becomes exponentia
small. @For largeL, the initial height at a given site is esse
tially a Poisson random variable,Pn.zne2z/n!, so the prob-
ability of having no active sites;(12P2d)Ld

.# The second
requirement is that there should be on average at least
critical site among the nearest neighbors of an active s
One expects the latter condition to depend sensitively oz,
raising the possibility of a phase transition as we vary t
parameter.

In one dimension, not surprisingly, we observe a rat
simple behavior. ForN,L, all trials die out rapidly, so tha
the only stationary state is the vacuum. ForN>L, on the
other hand, virtually all trials survive indefinitely.~We veri-
fied this up to L51000. In some instances the syste
evolves to a configuration of the form. . . 11112011111 . . . in
which the active site must forever circulate.! Thus we see a
first-order transition atz51; the stationary active-siter ā
density jumps from 0 to about 0.15.

In two dimensions the nondriven sandpile exhibits a cr
cal point. Figure 5 shows that the active-site density in s
viving trials exhibits a nonmonotonic approach to its statio
ary value. By performing studies of this kind, always bei
careful to check that the system has reached a statio

FIG. 5. Evolution of the active-site densityra , and of the den-
sity rc of critical sites, in the two-dimensional stochastic sandpile
e5h50. System sizeL5160; mean heightz5zc52.125.
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state, we determinedr ā(z,L) for a range ofz values and for
L520, 40, 80, and 160. In Fig. 6 we see thatr ā appears to
increase continuously from zero at a critical value ofz. To
fix zc we study the dependence ofr ā on L, as it should
follow a nontrivial power law (r ā;L2b/n' in the usual no-
tation!, only at the critical point. Figure 7 showsr ā fall ow-
ing a power law forz52.125, but clearly not for 2.124 o
2.126, allowing us to conclude thatzc52.1250(5) for the
two-dimensional sandpile. Indeed, this value for the me
height is in perfect agreement with the exact resultz
52.1248, . . . derived by Priezzhev for thedriven sandpile

t

FIG. 6. Stationary active-site densityr ā in the two-dimensional
stochastic sandpile ate5h50, as a function ofr[z2zc . The

inset showsr ā vs mean heightz on linear scales.1: L540; 3:
L580; L: L5160.

FIG. 7. Stationary active-site densityr ā in the two-dimensional
stochastic sandpile ate5h50, as a function of system sizeL. s:
z52.124;L: z52.125;h: z52.126.
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57 5103SELF-ORGANIZED CRITICALITY AS AN ABSORBING- . . .
@36#. We also verify that atz5zc , each active site has, o
average, one critical nearest neighbor. The overall densit

critical sites isr c̄50.434, again in agreement with drive
sandpile simulations@37#. ~At the critical point, about 10%
of critical sites have heights in excess of 4.!

Having located the critical point, we can examine t
critical scaling of various quantities. Figure 6 shows a cl
power-law dependence of the active-site density on the

tance from the critical point: r ā;(z2zc)
b with b

50.59(1). The dependence ofr ā(zc ,L) on system size
yields b/n'50.67(1). ~Figures in parentheses denote tw
standard deviations in a least-squares linear fit.! We also
monitored P(t), the fraction of surviving trials at timet.
~Approximately half of the trials appear to survive inde
nitely at zc .) Associated with the~approximately exponen
tial! approach ofP(t) to its limit is a relaxation time,t. We
find thatt has a power-law dependence onL at the critical
point: t;L2n uu /n', with n uu /n'51.86(8). For comparison,
we note the values for DP in 211 dimensions:b.0.58,
b/n'.0.80, andn uu /n'.1.76. The similarity inb values is
curious, but the differences in the other ratios indicate t
the sandpile is not in the DP universality class.~This is as
expected, given the differences between the sandpile and
CP discussed in Sec. III.! Studies of correlation functions
that will allow determination ofn uu andn' separately, will be
reported in a future publication.

In the simulations just described, we have fixedz, one of
the variables that the dynamics selects indriven sandpiles
with dissipation at the open boundaries. We observe criti
ity just at the valuezc observed in the driven case, and oth
variables such as the critical site density assume the s
value in the two cases. In effect, we are able to study sa
piles in either of two ‘‘ensembles,’’ one with fixed energ
the other with this variable adjusted by the system dynam
Open boundaries, which served, in earlier sandpile sim
tions, as an outlet for accumulated energy, are now seen
to be essential for criticality. Finally, we note that our obs
vation of criticality — at the samezc as in the BTW model
— in a stochastic sandpile with fully local rules, supports t
expectation voiced in Sec. II, that we can study SOC usin
regularized dynamics.

B. Driven pair contact process

The one-dimensional PCP has a continuous absorb
state transition atqc ; below this value of the creation prob
ability, the system falls into one of an exponentially lar
~with L) number of absorbing configurations, each devoid
NN pairs. In contrast with previous studies, here we stud
driven PCP. Starting from an empty lattice, we add partic
at randomly chosen vacant sites, until a NN pair is form
We then suspend the addition of particles, and permit
system dynamics, as described in Sec. II, to operate, unti
system again falls into an absorbing configuration. We sim
late a system of sizeL51000 with periodic boundary con
ditions and study the avalanche distributions for differe
values ofq, with both parallel and sequential updating.

We collect statistics on the size and duration of the a
lanches for various values ofq. As illustrated in Fig. 8, the
avalanche-size distributionP(s) is a power law for some
of
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range ofs, but suffers an exponential cutoff atsc , which
grows asq→qc as

sc;~qc2q!21/s. ~30!

~Note that due to parallel updating, the critical creation r
qc.0.95 rather than 0.9229 as found in sequentially upda
simulations.! We see that the slope of the power-law dist
bution is consistent with DP~i.e., t51.08). Sequentially up-
dated simulations~not shown! yield t51.12 ands50.45,
while the DP value is 0.39. In addition, we observe that
the critical point, the isolated-particle density approaches
natural value,fnat.0.2 ~parallel updating! ~see Fig. 9!.
~Similarly, in the sequentially updated case we observef
→fnat.0.242.! A detailed comparison of avalanche scalin
under parallel and sequential dynamics will be presen
elsewhere@38#.

In the slowly driven PCP, the system dynamics ‘‘se
organizes’’ the isolated-particle densityf to its natural

FIG. 8. Avalanche-size distributionP(s) in the slowly driven,
one-dimensional PCP, for various values of the creation probab
q. The system size isL51000 and 106 avalanches are recorded fo
each curve.

FIG. 9. The densityf of isolated particles in the slowly driven
one-dimensional PCP atqc , approaches the natural value.
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5104 57DICKMAN, VESPIGNANI, AND ZAPPERI
value, the same as in the nondriven system. This is simila
what happens in the sandpile, where the driven system
lects the same critical mean height,zc that we found in simu-
lations without driving. There is, however, one rather str
ing difference between the models. In the PCP, activity
spread atqc for any f in the range@0,1/2#. In the sandpile,
by contrast, activity cannot spread at all if the critical-s
density is too low. Each toppling destroys an active site,
at least one of the neighbors must take its place if activity
to persist. In the PCP, each particle creation generates at
one new pair as well, so the activity has a possibility
surviving even in anempty lattice. This suggests that on
investigate a modified PCP, in which a pair creates at part
at a ~vacant! second neighbor, rather than at a NN; in th
case new pairs will only be formed iff is sufficiently large.
Other potentially interesting models are a saturation-free
sion of the PCP, and the PCP in two dimensions, where o
two distinct universality classes are predicted, namely,
and dynamical percolation@39#. We defer investigation of
these models to future work.

VI. SUMMARY AND PERSPECTIVE

In this paper we have argued that SOC can be unders
as an aspect of multiple absorbing-state models under a
drive. We pointed out the similarities in the phase diagra
of the two classes of models~for the sandpile and the birth
and-death process, they are identical!, and in terms of ava-
lanches and of bulk critical behavior, without boundary d
sipation. We demonstrated that the sandpile exhibits
absorbing-state transition as we vary the mean height,
that the PCP, heretofore studied only as an absorbing-s
transition, exhibits a power-law avalanche distribution un
a slow drive. We also suggested several new models to
vestigate, and derived a field theory of sandpiles.

Beyond these and other avenues for quantitative inve
gation, we propose a viewpoint of SOC itself. What ‘‘go
critical’’ in sandpiles isra , the density of active sites. Th
evolution of ra is intertwined with other fields, which ar
frozen whenra50. These fields describe an energy dens
.
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that is strictly conserved at the critical point. In order f
avalanches to be critical, two conditions are needed. F
the parametersh and e must be set to their critical values
i.e., to zero. This is accomplished by the definition of t
model, rather than by tuning parameters, but seems v
similar in principle to criticality in CP-like models. The sec
ond condition is that the environmental density is such as
support avalanches on all scales. Particle conservation p
an essential role in this aspect, with the threshold for t
pling providing a certain independence betweenra and the
overall particle density. From this vantage, SOC is
absorbing-state transition riding atop a substrate that
serves a record of the previous activity. SOC typifies
behavior under slow drive, at the critical point of a mod
with an infinite number of absorbing configurations.

Finally, we offer a comment on the significance of san
piles as models or paradigms of physical processes. The
tention of the remark that the sandpile sits, by definition,
the critical point in a two-dimensional parameter space
not to trivialize it, but rather to provide insight and access
new conceptual and computational tools. One may ar
whether there is any point introducinge andh as parameters
for the sandpile; we merely posit that their discussion see
natural if one wishes to draw an analogy between sandp
and other models with critical absorbing-state transitio
The question ‘‘why is nature filled with systems that tu
themselves to a critical point?’’ may be replaced with: ‘‘wh
do so many systems share the typical features of conse
tive, saturation-free dynamics, a threshold for activity, a
widely separated time scales for external driving, on o
hand, and above-threshold dynamics on the other.’’ T
question of how this facet of nature works remains a de
one.
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