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We explore the connection between self-organized criticality and phase transitions in models with absorbing
states. Sandpile models are found to exhibit criticality only when a pair of relevant parameters — dissipation
€ and driving fieldh — are set to their critical values. The critical valuessaindh are both equal to zero. The
first result is due to the absence of saturatipa bound on energyin the sandpile model, while the second
result is common to other absorbing-state transitions. The original definition of the sandpile model places it at
the point €=0h=0"): it is critical by definition We argue power-law avalanche distributions are a general
feature of models with infinitely many absorbing configurations, when they are subject to slow driving at the
critical point. Our assertions are supported by simulations of the sandgiletat 0 andfixedenergy density
¢ (no drive, periodic boundarigsand of the slowly driven pair contact process. We formulate a field theory for
the sandpile model, in which the order parameter is coupledtmaervednergy density, which plays the role
of an effective creation rat¢S1063-651X98)08805-9

PACS numbg(s): 64.60.Lx, 05.40+j, 05.70.Ln

I. INTRODUCTION some dynamical systems the critical point is reached auto-
matically, without any fine tuning, thus explaining the wide
Avalanche behavior is common to many physical phe-occurrence of power laws in nature. The idea was then ex-
nomena, ranging from magnetic systettiee Barkhausen ef- emplified by several dynamical models, such as the sandpile
fect) [1] and flux lines in highf, superconductor§?], to  [7], and the forest-fire modg¢B]. The SOC hypothesis has
fluid flow through porous medi§3], microfracturing pro- stimulated an enormous amount of research. If this — as one
cesse$4], earthquake§5], and lung inflatior{6]. The com-  of its originators has concluded — is “how nature works”
mon feature of all these systems is slow external driving[9], then the question of “how SOC works” becomes all the
causing an intermittent, widely distributed response. Ava-more urgent.
lanches come in very different sizes, often distributed as a The concept of “spontaneous” criticality, as discussed in
power law. This fact excites the interest of statistical physi-the SOC literature, presents, however, several ambiguities.
cists, since power laws imply the absence of a characteristieveral authors have noted that the external driving rate is a
scale, a feature observed close to a critical point. In order tparameter that has to be fine tuned to zero in order to observe
describe a critical point, we need only specify a set of criticalcriticality [10—-13. On the other hand, it would be amazing,
exponents, whose values are determined by general symmeithout prior knowledge of the critical coupling, to define a
tries and conservation laws and do not depend on microsystem like the Ising model so that it is intrinsically at its
scopic details of the system. critical point. SOC appears less miraculous if we suppose
Is there a connection between the observed power-lawhat there is “generic scale invariance,” i.e., that criticality
distribution of avalanche sizes and critical phenomena? Andbtains over a region of parameter space, not just a point.
if so, can we understand the physics of avalanches by applyBut we will argue that as for the Ising model, SOC typically
ing what we know about critical points and universality? A exists at a criticapoint in the relevant parameter space. The
tentative answer to these questions was given by Bak, Tanggdentity of the parameters has been obscured by the manner
and WiesenfieldBTW) [7], who proposed that the power in which the models were defined. How can a model be
laws in avalanche statistics are due to a new kind of criticatritical by definition, when for most statistical mechanics
phenomenon, which they called self-organized criticalitymodels, we do not eveknowthe exact critical point? One
(SOQ. In ordinary phase transitions, criticality is attained way for a system to discover its own critical point is through
only by fine-tuning certain control parametétemperature, a suitable extremal dynamics, as in invasion percolation; an-
pressure, etg.to special values. Only close to this critical other is that we may know the critical parametarsriori,
point is scale invariance observed. BTW suggested that ibecause they are fixed by a symmetry or a conservation law,
and build these into the definition of the model.
Recently, a novel mean-field analysis of SOC models was
*Present address: Departamento dsida, Universidade Fed- presented13], which pointed out the similarities between
eral de Santa Catarina, Campus Univérgita Trindade, CEP SOC models and models with absorbing stafes15. (An
88040-900 Florianpolis, SC, Brazil. Electronic address: absorbing state is one allowing no further change or activ-

dickman@Ilcvax.lehman.cuny.edu ity.) The mean-field theory provides a new insight into the
"Electronic address: alexv@ictp.trieste.it origin of SOC, which, in the sandpile model, is essentially
*Electronic address: zapperi@miranda.bu.edu the criticality of the population of toppling sites. It turns out
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o sion) The order parameter is the density of active (occu-
© T ®e e O O e O e pied sites, which vanishes at the transition as
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N _ _ _ leading ton.=1 andB=1. As in equilibrium, we character-
FIG. 1. () Transition rates in the one-dimensional contact pro-ize the critical singularities by a set of critical exponents

cess. Filled circles denote occupied sites, open circles, vacant sitgg 9], such asg, andv, , which describes the divergence of
gray sites may be either occupied or vacdhbt. Transition rates in  the correlation lengtlz:

the one-dimensional pair contact process.

E~(N—No) " )
that SOC corresponds to the onset of nonlocality in the dy- ]
namics of the system. Nonlocality, and hence criticality, isBesides the “thermal” perturbatiod=A—A., a second
obtained by fine tuning the control parameters, precisely a§levant field is an external particle soufte(h is the rate of
in continuous phase transitions. In this paper we focus on theSPontaneous™ creation at vacant sitesFor A=0, p,
similarities and differences between SOC and models witti~h™*". Other exponents are defined by considering the de-
absorbing states. The latter are relatively well understood€ay of perturbations to the stationary stet6]. Models with
We can identify the order parameter, and know the static an@ Single absorbing state fall generically in the universality
dynamic scaling behavior in the neighborhood of the criticalclass of directed percolatiofDP), also known as Reggeon
point. The mean-field and field-theoretic analyses are weffield theory[19-21]. o .
established, and one has some idea how to derive these start-A More complicated situation arises when many absorb-
ing from an exact master equatiqi6]. Applying these Ing configurations exist. The simplest model to have been
ideas, we arrive at a new understanding of SOC. studied in detail so far is Jensen’s pair contact protegs)

In Sec. Il we review the models of interest: contact pro-[22] [see Fig. 1)]. In this model, a nearest-neighbor pair of
cesses and sandpiles. The formulation of a general theory @@rticles may mutually annihilate, with probabilipy or else,
SOC is problematic because of the nonlocal interactions imWith probability g=1—p, create a new particle at a ran-
plicitly present in these models. For instance, field-theoreti€lomly chosen NN, provided it is vacant. There are infinitely
analysis encounters difficulties related with the singularity ofhany absorbing configurations, since all that is required is
the continuum limi{17]. Moreover, it is in general not pos- the absence of any NN particle pairs. In one dimension the
sible to treat simultaneously the two time scales of avalanchétatic critical behavior afj.=0.9229 is DP-likg22,23, but
propagation and external driving. Section Ill describes howthe spreading or avalanche dynamics has variable exponents,
these problems can be solved by a suitable “regularization’depending on the particle density in the environment of
of the dynamics, which is local in space and time, and prethe seed24]. A special, “natural” class of absorbing con-
sents sandpile criticality as a kind of absorbing-state transifigurations with particle densit,, are those spontaneously
tion. The regularized dynamics readily lends itself to a con-generated by the critical dynamics. DP spreading exponents
tinuum formulation, presented in Sec. IV. This motivates, inare recovered only if the initial particle density is set to
Sec. V, a study of sandpiles at the critical point, without®nar=0.242(1)[24-27.
boundaries or driving, and of the pair contact process subject

to a slow drive. We present preliminary simulation results of B. The sandpile model
tShee:erystems. We summarize our perspective on SOC in Sandpile models are cellular automé&&2) with an inte-

ger (or in some cases continuguvariablez; (“energy”),
defined on al-dimensional lattice. At each time step an en-

Il. CONTACT PROCESSES AND SANDPILES ergy grain .is added to a randomly chosen .site, until the en-
ergy of a site reaches a threshald When this happens the
A. The contact process site relaxes:

One of the simplest models showing an absorbing-state
transition is the contact proce&SP) [18] [see Fig. 1a)]. To
each site of al-dimensional lattice we assign a binary vari- 54 energy is transferred to the nearest neighbors:
able ;=0,1. (Occupied sites are said to harbor a “par-
ticle.”) Occupied sitesd¢=1) become emptyd=0) at unit zj—zjty;. (5)
rate, while empty sites become occupied with tate where
w is the fraction of occupied nearest neighlddiN) sites.  The relaxation of a site can induce NN sites to relax in turn,
The vacuum statéall sites empty, is clearly absorbing and if they exceed the threshold because of the energy received,
is the only stationary state far<<\., while for A>\; there  and so on. From the moment a site reaches threshold, until
is also an active stationary state..&3.298 in one dimen- all sites have again relaxed;z., Vi), the addition of

Z—2— 2, (4)
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FIG. 3. The Manna sandpile model. When two grains are accu-
mulated in one lattice sitez{=2), the site relaxes distributing the
grains to two randomly chosen neighbors.

(0) site is lost, instead of being transferred to one of the neigh-
. . bors[33]. In a discrete-energy model, such as the Manna or

FIG. 2. The BTW sandpile model. When four grains are accu-gT\y sandpiles, one can introduce a parameteepresent-
mulated in one lattice sitez{=4), the site relaxes distributing the ¢ the gqverage energy dissipated in an elementary relaxation
grains to the neighboring sites. event. The two dissipation mechanisms lead to the same ef-

fect, namely, a characteristic length is introduced into the

energy 1S sgspended. The sequence of events during this Ilestem and criticality is lost. The avalanche size distribution
terval constitutes anvalanche For conservative models the decays as

transferred energy equals the energy lost by the relaxing site
(2y;=z), at least on average. Usually, dissipation occurs
only at the boundary, from which energy can leave the sys-
tem.

Since the energy input stops during an avalanche, wéhere the cutoff size scales ag~e~*". We can also ob-
have, in effect, an infinite time scale separation between th&erve avalanches in the contact process, by starting the sys-
toppling dynamics and the external source. Under these cofeéM With a single particlg34]. The activity may spread over
ditions the system reaches a stationary state characterized B}gny sites before dying out; avalanches are power-law dis-

avalanches whose sizesare distributed as a power law tributed if X is set to its critical value. _ _
[7,28-31: At first glance, the BTW sandpile looks quite unlike the

CP. One difference is that the avalanche dynamics in the
P(s)~s™". (6)  sandpile ismonlocalanddeterministic The sandpile model is
inherently nonlocal because of the implicit time scale sepa-
The model introduced by Bak, Tang, and Wiesenf&@8@W)  ration. A site can receive energy only if the system is
[7] is a discrete automaton in which=2d andy;=1 (see quiescent, i.e., no active sites are present on the lattice. This
Fig. 2. implies that transition rates depend upon the entire set of
An interesting variation of the original sandpile is the lattice variables present in the system, giving rise to a
Manna mode[32] (see Fig. 3. In this automaton the critical strongly nonlocal dynamical rule. Given the configuration
threshold isz.=2 independent of the dimensionality and  prior to the avalanche, and the location of the newly added
if a relaxation(toppling takes place, the energy is distrib- particle, deterministic toppling rules govern the evolution to
uted to two randomly chosen nearest-neighbor sgee Fig. the next stable configuration, and this evolution can affect
3). Variations in which part of the energy is kept by the sites anywhere in the system. To have any hope of applying
relaxing site can also be considered, as well as models ithe methods used for the CP, we have to assume that the
which energy is transferred along a preferred direcfi28i. deterministic sandpile dynamics can be realized as a limiting
Finally, sandpile models in which part of the energy iscase of models with local, stochastic dynamtwsionging to
dissipated have been studi¢@3]. In continuous-energy the same universality class as the sandpile refer to this
models, some fraction of the energy removed from a relaxin@s “regularizing” the sandpile rulesThe latter hypothesis

P(s)~s "f(sls.), (7
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would need to be verified, but seems plausible if the rules . h
respect the same symmetries and conservation laws as those sandpile,
of the original model(We provide an example in Sec.)V.
Similar considerations apply to “extremal dynamics,” which
requires the action of an omniscient agent to choose the next
event. Such a dynamics can presumably emerge as a limiting
case of local rules in which each unit only has information vacuum
about a finite number of neighbors.

As originally defined, the sandpile seems to invohe
parameters. There is only the toppling rule, which, after

birth & death nss "
active

________ — r

some time, miraculously yields a critical state. But in devis- CP, PCP h

ing a regularized dynamics, we are forced to include a non-

vanishing driving rate by introducing the probability per active active

unit time that a site will receive a grain of energh3]. (We

may fix the relaxation rate for active sites at upifgnergyis = ——————————=" " -,

distributed homogeneously and the total energy flux is given
by Ji,=hL%. The parameteh sets the driving time scale or
equivalently the typical waiting time between different ava-  FIG. 4. Phase diagrams of the sandpile and birth-and-death pro-
lanches asrq~1/h. As h—0, we recover the slow driving cesses, and of the contact process and the PCP. The thermal param-
limit; i.e., during an avalanche the system does not receiveterr corresponds t@ in the sandpile, X in the birth-and-death
energy. This formulation of the dynamics has the advantagerocess, and ta.—\ in the contact process. “nss” denotes a re-

of being local in space and time. The state of a single sit@ion where no stationary state is possible.

depends only on the state of the site itself and its nearest-

neighbor sites at the previous time step, through a transitiofieory of the PCP the order parameter — the density of

probability that is given by the reaction and driving rates. nearest-neighborpairs — is coupled to a non-order-
parameter field23].)
In absorbing-state transitions, it is very useful to consider
lIl. TOWARDS A LOCAL THEORY OF SOC the spread of active sites from an isolated seed. Following
. , the scaling framework developed by Grassberger and de la
After reformulating the sandpile rules as local and sto—g e [19], we expect that the probability that a small per-

chastic, we can proceed along the path followed for nonequig,rhation imposed on an absorbing configuration activates
librium phase transitions. From the master equation we Cagjios scales as

derive mean-field equations that give a qualitative picture o

th.e phenomenon, exploiting several analogigs with mogiels P(s,e)=5""G(s/s(€)), (9)
with absorbing states. The mean-field analysis of regularized

sandpiles shows that the order parameter is the depgiof ~ wheres,~ e~ is the cutoff in the avalanche size. The per-
active sitegi.e., whose height=z.), and thatp, is coupled turbation decays in the stationary subcritical state as

to the densities of “critical” g=z.—1) and “stable” (z

<z.—1) sites[13]. In mean-field theory, the dependence of pa(t) ~t7F(t/t(€)). (10

the order parametes, on the parameterh and e can be o .

obtained on the back of an envelope. Since energy is Cc,r{—Jer_e te deno_tes the characteristic time, which scaled.as
served in the stationary state, the incoming energy dyx € YIl. In this way we have translated the avalanche de-

must be balanced by the dissipated enedgy=ep,L°. scription into the formalism commonly employed to study
From J;,=Jo,;, We obtain Core models with absorbing stat¢34].
I uts

It is natural to regard sandpile models as having two pa-
rameters,e andh, with the original models poised, by defi-
nition, at the point (0,0). It should be evident that in the

8 sandpile model is a “temperaturelike” variable, playing the
same role as\.—A=—A in the CP. Fore>0 we cannot
have sustained avalanches; they decay exponentially in this

There is no stationary state fbr> €; see Fig. 4. The model is subcritical regime. To have self-sustained avalanches, or an

critical just in the double limith,e—0h/e—0, since the active stationary state with=0 in the sandpile, we would
zero-field susceptibilityy=dp,/dh diverges, implying a neede<0, that is to say, the possibility of creating addi-
long-ranged(critical) response function. Critical behavior tional energy quanta when a site topples. But this immedi-
emerges in the limit of vanishing driving field, correspondingately raises a new problem: the energy will never be lost
to locality breaking in the sandpile dynamics. The driving (except at the boundarigso in the thermodynamic limit we
and dissipation rates are theontrol parametersof the shall have a runaway “chain reaction” instead of a station-
model; the stationary order parameter naturally vanishes airy state fore<0. The impossibility of a stationary state for
the critical point. Whenh=0, any configuration withp, = €<<0 is analogous to the absence of a well-defined free en-
=0 is absorbing. Thus there are an infinite number of abergy in the Gaussian model beldw. Neither model has the
sorbing configurations for a sandpile, just as for the pairsaturation effect needed for stability in the “low-
contact procesgIn close analogy with Refl13], in the field  temperature” phase. In the Gaussian model the stabilizing

vacuum

Pa=

m| =~
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ug* term is missing from the Hamiltonian, while in the balanced by dissipation. That is, the only stationary state for

sandpile there is nothing to stop energy from accumulatinga sandpile at (0,0) is a critical state.

Indeed, to do so would mean to lose energy from the system, What happens when we impose an activity threshold on

destroying the conservation law even fer 0. Criticality = the CP? One realization of such a threshold corresponds to

would thenrequire that e take some negative bat priori ~ the PCP. We study thériven PCP in Sec. V. Here we con-

unknownvalue.Thus the possibility of not having to tune the sider the field-theoretic description of the P[23]. As noted

system is predicated on the absence of saturatiorequiva- above, the order parameter is coupled to a non-order-

lently, on having strict energy conservation whenO. parameter fieldh representing the density of isolated par-
Another example is furnished by removing saturationticles. The equations take the form

(i.e., the restriction to at most one particle per)sftem the

CP, resulting in an exactly soluble birth-and-death branching 5_9_ 2 2
process. In this model, particles disappear at unit rate, and ot =D,Vip—ap=bp —wnpt---+7, (12)
produce offspring at rata, at neighboring sites, whether
they are occupied or not. This corresponds to setind) in ~ and
the mean-field equation n
—r=DaViptrp—up’=wnp+ 47, (13

dp )
i A=Dp—bp (11

where the noise terms satisfy
The density grows without limit foh>\.=1. It is impor- _ Ul N T oy ot
tant to note thah.=1 not only in mean-field theory, but in (D21 =T3 jp (xS =x) 8(t=1"). (14)
fact for the actual birth-and-death process. Avalanches folrne figldn(x,t) is frozen in regions wherp=0. [If w=0,

low power laws, with the survival probabilifp(t)~t™* for  Eq (12) is the minimal field theory for the CE35].] Now,
example. Restoring saturatiobX0) permits the existence pecause of the simple form of the equation, we can for-
of an active stationary state, but at the cost of shiftipgo mally eliminate this field to obtain

some larger bufa priori unknown value. (The birth-and-

death process is free of higher-order terms that would renor- ap 5 )

malize the critical value of the thermal parameter from that ot D,V p—ap—bp“+ n,—wrp(x,t)

given by mean-field theory.As shown in Fig. 4, neither

model has a stationary state for negative values of the ther- t o, el dsp(s)

mal parameter; this is the main difference from the phase X fodt p(x,t")e Mt (15
diagram of the CP. The sandpile, however, presents a further

subtlety: while there is no upper bound energy the order  \yhich exhibits a long-memory effef23]. The nonlocal term

parameter is subject to saturation, singgcannot exceed tyrns out to be irrelevant to the stationary properties of the

unity. active phase: it is exponentially small if the density of active
The critical point of the birth-and-death process iskat  sjtes is different from zero. The situation can be different for

=1 because this point corresponds to a balance, on averaggyreading from a seed, in which case the active sites form
between births and deaths. Similarly, the sandpile is criticabnly an infinitesimal fraction of the lattice.

at e=0 because a toppling site sends a patrticle to eaah of
neighbors, and each of these neighbors is critical with prob-
ability 1/g, so the gain and loss terms for the number of
active sites balance on average. Thus the sandpile and the A field theory of sandpiles should parallel that for the
birth-and-death process have the same phase diagram. THREP in many respects. As noted before, a crucial point of the
does not mean, of course, that the two models share the sarsandpile dynamics is the coupling of the density figldvith
avalanche dynamics — that of the birth-and-death process the background of critical sites.. Each region devoid of
rather trivial. An important aspect of the sandpile is that theactive sites is frozen until such a site is generated. The ac-
condition needed for critical avalanches — that a fracti@n 1/ tivity spreads and in general alters the configuration before it
of the nearest neighbors of an active site be critical — isnoves away or disappears. The active sites leave a trace of
established by the transient dynamics of the model. The lefttheir dynamical history in the frozen configurations of criti-
overs from preceding avalanches provide the environment ioal and stable sites they produce. If new active sites are
which activity is critical. Memory appears to be the crucial created in the same region at some later time, they will feel
feature of SOC models, and is due to the presence of a notthe effect of the active sites present earlier in the region. This
trivial threshold for activity; for sandpiles this means thatcreates a long-range interaction in time and space among
z.=2. (For completeness, we note that a sandpile vgith active sites. The range of this interaction depends on the
=1 corresponds to a simple random walk, with well-knowncharacteristic time scale of the driving, because the fluctua-
scaling properties. One may think of it as the analog of thdions induced byh destroy the memory effect. Close to the
birth-and-death process, in the family of models obeyingnfinite time scale separation, the characteristic driving time
strict conservation of particle number fer=0.) The mean- scale diverges and the range of the nonlocal interaction ex-
field analysiq13] shows that havingon averagga fraction tends to the entire system. This picture is valid also for the
1/g of the nearest neighbors of an active site critical is necPCP, since in both systems the response function diverges as
essary for having a stationary state, in which energy input i, approaches zero and the nonlocal term becomes more and

IV. FIELD THEORY OF SANDPILES
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more important ag,— 0. In sandpile models the density of (Again we have neglected diffusive noise, and have used the
active sites is proportional to the external fitlldand nonlo-  fact that in the absence of a source and of dissipation, the

cality is recovered in the limih—0. total energy does not fluctuatéor h= =0 we have simply
We turn now to a detailed continuum description of the

BTW model. Letp;(x,t) be the density of sites with height il

at x. We note that each site is subject to an input of energy E_V Pa, (22

due to three sourceél) The external fieldh; (2) toppling of

active sites at any of the four NN's: (4€)p, Where p,  so thatE= [d®x{(x,t) is conserved.

=3,-4p; and € is the average energy dissipate(®) a The generalization of Eq$16) and(17) to other dimen-

diffusion-like contribution: (1 €/4)V?p,. The diffusive  sions, or to other sandpile modétsg., Manna’s is straight-

term arises because a gradienfpinleads to a particle flux: forward, but the analysis of this complicated set of equations

the excess in the mean number of particles arrivingfabm  is problematic. One might try to cut off the hierarchy by

the left, over those arriving from the right, jg(x,t)=—(1 simply declaringp;=0 for i greater than somé.. The

—€ld)dp,. The net inflow of particles ak is therefore choice of cutoff, however, is not obvious, and one would

—V-j=(1-€l4)V?p,. Applying these observations to the have to add suitable correction terms to ensure that energy is

mean-field equations derived in REE3], we can write down conserved when one active site topples onto anofiAdter-

the following set of continuum equations: ing the sandpile rules tforbid such transfers — in effect,

constraining all sites to have<z. — raises an interesting

Ip; 1 T ossibility, but one that we shall not pursue further hehes.

W=Pi+4+(Pi—1_Pi){(4_ &)l patiVipalthi+nl,, Z step to}\l/vard simplification of the cgntinuum equations, we

sum up Eq(17) for i=4 to obtain

—77|+ Ni—1> Oglgg (16)
| Ipa * 1y2
an Wz_pa+Pa+p3{(4_€)[pa+ZV pa]+h}
Ip, T *
5_t|:_Pi+Pi+4+(Pifl_Pi){(4_5)[Pa+%Vzpa]"'h} et e e 2
* ¥ ) T_v. T * = T i
—mi ol it o, 124 17 wherep, =i=gpi, 7a=i=a7; , aNd 77, =i=g7; . Since

the density of sites with heights 8 should be negligible, we
(Fori=0, of coursep_; and7_, are identically zerd.The might ignore the terms with asterisks. Then the active-site
terms 7; represent noise arising due to fluctuations in thedensity is coupled only tps, identified in Ref.[13] as the
number of events of a given kindy; is the contribution density ofcrltlpal Slte.S,pc. In' t.hat work, sites with helghts
associated with the reaction-i+ 1, and 77iT with toppling: <3 are considered in a unified manner, as the density of
i—i—4 for i=4. Since the number of events is PoissonStablesites,ps. Equation(16) shows, however, that the evo-
distributed(approaching a Gaussian in the continuum [jmit Iﬂt'on of p. is coupled specifically t@,, not simply tops

the variance equals the mean, and the noise variance is pro-°o " P P2- In the mean-field theor}13], the quantityu
portional to the mean rate of the corresponding process. Thus P2/ s i therefore introduced. In a spatially homogeneous

we have stationary state, the value afcan be deduced from energy
conservation. But in the present conteut= u(x,t) is an-
(ni(x,t)n,-(x’,t’)>=l"6ij5(x—x')6(t—t’)pi(x,t) other dynamical variable. Thus our attempt to reduce Egs.
(16) and(17) to a description in terms of three basic catego-
X[(4—€)pa(x,t)+h] (18)  ries meets with difficulties.

Rather than pursuing a systematic derivation of a reduced
set of equations from Eq$16) and(17), we shall use what
T Tior eI\ TS S(v TN we have learned so far, together with the observation that in
(7 (XD 7; (X1 ))=T76;8(x=x")o(t—t )p,(x,t).(lg) constructing a field theory, a detailed accounting is unimpor-
tant, so long as one respects the symmetries and conservation

The noise terms:V2p, have been dropped, as they are ex-laws of the original model. In the present instance, it is es-
pected to be irrelevar?t. ’ sential to ensure conservation of energy whenh=0. In

This set of equations satisfies probability conservationfact: EQ.(20) represents this explicitly, and shows how the
Sps iS a constant, equal to unity by normalization. Let €N€rgy density is coupled top,. We therefore retain Eq.

{(x,t)=3sp4(x,t) be the local energy density. From Egs. (20 as one of our basic equations. o
(16) and (17) we have We obtain the other equation by replacipgin Eq. (23)

with f({)(1—p,): only nonactive sites can contribute to the

and

a e\, gain term forp,, and they do so at a rate that depends on the
i ( 1- Z) Vipath—epat g, (200 local energy density.f(Z) plays a role analogous to that of
u in the mean-field theoryFor smallZ, far from criticality,
where one expects the height distribution to be Poissonian, so that
f(£)=Z3; for large values ofZ, f will approach a limiting
(ng(x,t)ng(x’,t’))=F§5(x—x’)6(t—t’)[h+ epa(x,t)]. value. The case of most immediate interest is a system near

(21)  the critical stationary state, with{=¢. and f=p.,
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where . and p. represent the average values of energy and to, /
the density of critical sites, respectively, at the critical point. {(x,t)=¢(x,t=0)+ fodt Vepa(x,t’). (28)
From the MF solution we havp,= 1/4 for the BTW model

in the limit h—0, i.e_., the _density_ of critical sites is still The evolution of the active-site density contains long-
rather small, andf is an increasing functionf({)=p. memory terms. I£(x,t=0)=o(X)~ ., then to leading or-
+A({—= L)+, with A>0. Presumably, only the linear o,

term need be retained in the vicinity of the critical point. The

resulting field theory for the regularized BTW sandpile is dpa 1 .
given by —t =7V Patallo—1)pa=pi
Ipa a t
i = PatlpetAL=L)](1-pa) +§_PaJ0dt’V2Pa(Xat’)+7/aa (29)
Cc
1g2
X{(4=e€)[pat 3V pal+h}+ 7, 24 Unlike the PCP, in which the memory terms decay
where xexp(—C/dtp,), here the memory decays more slowly, via
the diffusive relaxation op, . It is worth noting that even in
{(na(X,0) (X' 1)) =T 8(x—x") S(t—t") (x,t) active regions, fluctuations in the height figlccannot relax
directly; they only do so by inducing similar fluctuations in
X[(4=e)pa(x,t) +h], (25  ,_ . Relaxation of the latter then redistributes energy along
] . ] with active sites.
together with Eqs(20) and (21). As in the PCP, our field  |n summary, all of the models discussed so far — sand-

theory for the sandpile supports an infinite number of absorbpjjes, the CP, PCP, and the birth-and-death process — have a
ing configurations: any(x,t) consistent withp,=0 (when  critical point in a space of two relevant parameters, one tem-
h=0). In both theories, the non-order-parameter field entergeraturelike ¢), the other fieldlike k). Criticality requires

the equation for the order parameter in the role oéiective  h=0. Models such as the sandpile and PCP have a nontrivial
creation rate The crucial difference between the PCP andhreshold for activity and therefore exhibit multiple absorb-
the sandpile is that in the latter case, this auxiliary field iSing configurations. When such models are run @t Qh

conserved at the critical point. . =0"), then out of a range of possible values for one or more
In a simple mean-field treatme(gpatially homogeneous, non-order-parameter densitiéibe critical-site density in the
no nois¢, we have sandpile, the density of isolated particles in the PQRe

dynamics selects a unique value. From this vantage, the fact

that certain models are critical by definition is of secondary

importance. The essential feature is the behavior of a critical

system under slow drive. We can study a critical, but non-

P§+[1+a(§__ 1)]2, (26) SOC sandpile by setting=h=(_); converse_ly, we can ob-
serve avalanches on all scales in the PCP if wesgp. and
h=0".

dpa _
dt

€ — € —
Z—a@—l%l—zﬂpf{1+mg—n]

€

X
4

1_

and
d¢ V. SIMULATION RESULTS
at . €PaT h, (27) The preceding discussion motivates several new kinds of
simulations of the sandpile and the PCP. We report some

where we define A(§—50)=a(z— 1) by introducingg_ preliminary results in this section.

=/(/{.. Fore andh small, anch/e<1, the mean-field equa-
tions have the stable stationary solutign=h/e, (=1
—h/ae. In the casen=0" — the slowly driven limith,e In a regularized theory of sandpiles, we need to introduce
—0, with h/e—0 — the stationary value of approaches a dissipation ratee=h to realize a stationary state. In the
the critical heightZ . It is easy to recognize then thaplays  original model, a stationary state is achieved by imposing
the role of a control parameter, analogousitan the CP,  open boundary conditions. While this may be appropriate for
with the critical point ate=0. modeling processes in which stress may only be released at

A different situation is faced when we impoge=h=0  the boundaries of the system, it is an inconvenience theoreti-
from the outset, rather than via the slowly driving limit. We cally: it is easier to study criticality in uniform systems; once
have from Eq.(27) that ¢ is strictly conserved in this case. bulk behavior is understood, the effects of various kinds of
The average energy density is thus an external parameter thapundaries can be analyzed. We therefore study a sandpile
can be freely fixed in the initial condition. In this case, in with periodic boundaries. We performed simulations of the
fact, £ is the only control parameter. In the following section stochastic BTW sandpile at€0,h=0). With e=h=0, the

A. Sandpiles ate=h=0

we present simulations of just such a situation. mean-height=N/LY is strictly conserved:; it is an additional
The full analysis of the field theory will be deferred to a parameter at our disposal.
future publication. Here we simply observe that ferh Initial configurations are generated by distributing at ran-

=0, dom a fixed numbeN of particles amond.¢ lattice sites.
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FIG. 5. Evolution of the active-site densipy, and of the den- -6 -4 -2 0
sity p. of critical sites, in the two-dimensional stochastic sandpile at |
e=h=0. System sizé =160; mean height={.=2.125. nr

FIG. 6. Stationary active-site dens@n the two-dimensional
(Since the initial configuration is on average spatially homo-stochastic sandpile at=h=0, as a function off=¢—¢.. The
geneous, all average properties such as densities and corfgset showsp, vs mean height on linear scales+: L=40; X :
lation functions are translation invariantOnce allN par- | =g80: ¢: L=160.
ticles have been placetbut not beforg the dynamics
begins: each active sité.e., havingz=z.=2d) topples at .=
unit rate. In practice, we maintain a list of the current set ofState, we determinely(¢,L) f‘?r a range of values and for
N, active sites, choose one at random as the next to topplé, =20, 40, 80, and 160. In Fig. 6 we see thgtappears to
and update the list following the redistribution of energy toincrease continuously from zero at a critical valueofTo
the 2d neighbors. At each toppling event, time is incre-fix {. we study the dependence pf on L, as it should
mented by IN, — the mean waiting time to the next event. follow a nontrivial power law ENL*BM in the usual no-

We compute average properties over a seNgf,pindepen-  taiiory), only at the critical point. Figure 7 shows, fall ow-
dent trials, each using a distinct ||j|t|al ponflguratlomsgmp ing a power law forf=2.125, but clearly not for 2.124 or
=103—'1'05 erendlng on the lattice size and the distance, 176 allowing us to conclude thdt=2.1250(5) for the
from crltl_callty.) . ) two-dimensional sandpile. Indeed, this value for the mean
Sustained activity depends upon two factors. First, ther‘height is in perfect agreement with the exact resdilt

must be at least one active site in the initial configuration._> 1248  derived by Priezzhev for tideiven sandpile
This condition is trivially satisfied on large lattices, as the ’

probability of havingno active sites becomes exponentially
small.[For largeL, the initial height at a given site is essen-
tially a Poisson random variablB,=¢"e"¢/n!, so the prob-

ability of having no active sites-(1— PZd)'-d.] The second 3.6
requirement is that there should be on average at least one i
critical site among the nearest neighbors of an active site. I
One expects the latter condition to depend sensitively,on

LT I ELELELELE B L R A

raising the possibility of a phase transition as we vary this 40T i
parameter. Q. -
In one dimension, not surprisingly, we observe a rather = . [
4.4 .

simple behavior. FON<L, all trials die out rapidly, so that
the only stationary state is the vacuum. FéeL, on the
other hand, virtually all trials survive indefinitelyWe veri-
fied this up toL=1000. In some instances the system 4.8 T
evolves to a configuration of the form.1111201111... in
which the active site must forever circulgt&hus we see a

first-order transition a=1; the stationary active-sitp, -5.2
density jumps from O to about 0.15. 25 30 35 40 45 50 55
In two dimensions the nondriven sandpile exhibits a criti- InL

cal point. Figure 5 shows that the active-site density in sur-

viving trials exhibits a nonmonotonic approach to its station-  FIG. 7. Stationary active-site density in the two-dimensional
ary value. By performing studies of this kind, always beingstochastic sandpile at=h=0, as a function of system size O:
careful to check that the system has reached a stationagy=2.124; ¢ : (=2.125;00: {=2.126.
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[36]. We also verify that at={., each active site has, on 10°

average, one critical nearest neighbor. The overall density of

critical sites isp.=0.434, again in agreement with driven . » q=0.85

sandpile simulation§37]. (At the critical point, about 10% 102 | %o e ;g:g:g?

of critical sites have heights in excess of 4. "ona +0=0.92
Having located the critical point, we can examine the A

critical scaling of various quantities. Figure 6 shows a clear S0t |
power-law dependence of the active-site density on the dis-&;

tance from the critical point:p,~({—¢)? with B

=0.591). The dependence op,({.,L) on system size
yields B/v, =0.671). (Figures in parentheses denote two
standard deviations in a least-squares lineay e also
monitored P(t), the fraction of surviving trials at time.
(Approximately half of the trials appear to survive indefi- 10° h 10
nitely at {..) Associated with théapproximately exponen-
tial) approach ofP(t) to its limit is a relaxation timer. We
f'm,j that 7 rﬁs ,? povyer—law dependence brat the C“,tlcal one-dimensional PCP, for various values of the creation probability
point: 7~L="II™", with v /Vi_: 1.8&8). For comparison,  ; ‘The system size is=1000 and 10 avalanches are recorded for
we note the values for DP in+2l dimensions:3=0.58,  g5ch curve.
Blv,=0.80, andv|| /v, =1.76. The similarity ing values is
curious, but the differences in the other ratios indicate that : .
the sandpile is not in the DP universality clagghis is as fange ofs, but sufiers an exponential cutoff a¢, which
expected, given the differences between the sandpile and {QEOWs asg—qc as
CP discussed in Sec. lJIStudies of correlation functions, i -l

. o . Sc~(de—a) . (30)
that will allow determination of/; andv, separately, will be
reported in a future publication.

In the simulations just described, we have fixgdne of
the variables that the dynamics selectsdiiven sandpiles
with dissipation at the open boundaries. We observe critica
ity just at the valug,, observed in the driven case, and other._ " .~ . . .
variables such as tche critical site density assume the sa tion IS cons!stent with DH'e"_T: 1.08). Sequentially up-
value in the two cases. In effect, we are able to study sandiated simulationgnot shown yield 7=1.12 ando=0.45,
piles in either of two “ensembles,” one with fixed energy, while _the DP_vaIue is 0.39. In ad_dltlon, we observe that gt
the other with this variable adjusted by the system dynamicé.he critical point, the isolated-particle d?”S'ty apprgaches its
Open boundaries, which served, in earlier sandpile simuladatural value, ¢n,=0.2 (parallel updatiny (see Fig. 9.
tions, as an outlet for accumulated energy, are now seen négimilarly, in the sequentially updated case we obsepve
to be essential for criticality. Finally, we note that our obser-— ¢na=0.242) A detailed comparison of avalanche scaling
vation of criticality — at the samé, as in the BTW model under parallel and sequential dynamics will be presented
— in a stochastic sandpile with fully local rules, supports theelsewherg 38].
expectation voiced in Sec. Il, that we can study SOC using a In the slowly driven PCP, the system dynamics “self-

10000

FIG. 8. Avalanche-size distributioR(s) in the slowly driven,

(Note that due to parallel updating, the critical creation rate
I9620.95 rather than 0.9229 as found in sequentially updated
simulations) We see that the slope of the power-law distri-

regularized dynamics. organizes” the isolated-particle density to its natural
B. Driven pair contact process 0.30 : :

The one-dimensional PCP has a continuous absorbing-

state transition af]. ; below this value of the creation prob- 0.25

ability, the system falls into one of an exponentially large

(with L) number of absorbing configurations, each devoid of 0.20

NN pairs. In contrast with previous studies, here we study a

driven PCP. Starting from an empty lattice, we add particles © 0.15

at randomly chosen vacant sites, until a NN pair is formed.

We then suspend the addition of particles, and permit the 0.10

system dynamics, as described in Sec. Il, to operate, until the

system again falls into an absorbing configuration. We simu- 0.05

late a system of sizé =1000 with periodic boundary con-

ditions and study the avalanche distributions for different 0.00

0 500 1000 1500 2000

values ofq, with both parallel and sequential updating. p

We collect statistics on the size and duration of the ava-
lanches for various values of. As illustrated in Fig. 8, the FIG. 9. The densityp of isolated particles in the slowly driven,
avalanche-size distributioR(s) is a power law for some one-dimensional PCP af, approaches the natural value.
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value, the same as in the nondriven system. This is similar tthat is strictly conserved at the critical point. In order for
what happens in the sandpile, where the driven system s@valanches to be critical, two conditions are needed. First,
lects the same critical mean heigtit,that we found in simu- the parameters and e must be set to their critical values,
lations without driving. There is, however, one rather strik-i.., to zero. This is accomplished by the definition of the
ing difference between the models. In the PCP, activity carnodel, rather than by tuning parameters, but seems very
spread aty. for any ¢ in the rangd0,1/2]. In the sandpile, similar in principle to criticality in CP-like models. The sec-
by contrast, activity cannot spread at all if the critical-siteond condition is that the environmental density is such as to
density is too low. Each toppling destroys an active site, angupport avalanches on all scales. Particle conservation plays
at least one of the neighbors must take its place if activity isan essential role in this aspect, with the threshold for top-
to persist. In the PCP, each particle creation generates at led#ing providing a certain independence betwggnand the
one new pair as well, so the activity has a possibility ofoverall particle density. From this vantage, SOC is an
surviving even in arempty lattice. This suggests that one absorbing-state transition riding atop a substrate that pre-
investigate a modified PCP, in which a pair creates at particléerves a record of the previous activity. SOC typifies the
at a(vacanj second neighbor, rather than at a NN; in thisbehavior under slow drive, at the critical point of a model
case new pairs will only be formed i is sufficiently large. ~ with an infinite number of absorbing configurations.
Other potentially interesting models are a saturation-free ver- Finally, we offer a comment on the significance of sand-
sion of the PCP, and the PCP in two dimensions, where onlpiles as models or paradigms of physical processes. The in-
two distinct universality classes are predicted, namely, DRention of the remark that the sandpile sits, by definition, at
and dynamical percolatiofB9]. We defer investigation of the critical point in a two-dimensional parameter space, is
these models to future work. not to trivialize it, but rather to provide insight and access to
new conceptual and computational tools. One may argue
whether there is any point introducirgandh as parameters
VI. SUMMARY AND PERSPECTIVE for the sandpile; we merely posit that their discussion seems

In this paper we have argued that SOC can be understocﬂ)atLIraI if one wishes _to drgyv an analogy between sapdpiles
d other models with critical absorbing-state transitions.

as an aspect of multiple absorbing-state models under a slo| A ion “why i filled with h
drive. We pointed out the similarities in the phase diagrams, '\ question “why 1s nat_urenl ed with systems t at“tune
themselves to a critical point?” may be replaced with: “why

of the two classes of mode(for the sandpile and the birth- q h h ical f ¢
and-death process, they are identicand in terms of ava- d° SO many systems share the typical features of conserva-
tive, saturation-free dynamics, a threshold for activity, and

lanches and of bulk critical behavior, without boundary dis-"" i -
sipation. We demonstrated that the sandpile exhibits al idely separated time scales for external driving, on one
nd, and above-threshold dynamics on the other.” The

absorbing-state transition as we vary the mean height, a . fh his f f K . d
that the PCP, heretofore studied only as an absorbing-staf/€stion of how this facet of nature works remains a deep

transition, exhibits a power-law avalanche distribution unde"€:
a slow drive. We also suggested several new models to in-
vestigate, and derived a field theory of sandpiles.

Beyond these and other avenues for quantitative investi- We are grateful to M. A. Muaz for helpful discussions
gation, we propose a viewpoint of SOC itself. What “goesand a careful reading of the manuscript. We thank the ICTP,
critical” in sandpiles isp,, the density of active sites. The where this work was initiated, during the workshop “The
evolution of p, is intertwined with other fields, which are Dynamics of Complexity.” The Center for Polymer Studies
frozen whenp,=0. These fields describe an energy densitywas supported by the NSF.
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